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Abstract

We introduce StratOS, a Big Data platform for general computing that allows a datacenter to be treated as a single
computer. With StratOS, the process of writing a massively parallel program for a datacenter is no more complicated
than writing a Python script for a desktop computer. Users can run pre-existing analysis software on data distributed
over thousands of machines with just a few keystrokes. This greatly reduces the time required to develop distributed
data analysis pipelines. The platform is built upon industry-standard, open-source Big Data technologies, from which
it inherits fast data throughput and fault tolerance. StratOS enhances these technologies by adding an intuitive user
interface, automated task monitoring, and other usability features.
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1. Introduction

In the last decade we have seen an exponential increase
in the volume of data generated from sensors, experiments
and simulations. Disciplines that once were data starved
are now being flooded with terabytes, and soon petabytes
of data. We are entering a new, data-driven, era of sci-
ence in which discoveries will be made by analyzing data
that is not only massive in size but heterogeneous and, in
some cases, highly interconnected. The challenge is how
to extract meaningful patterns from the sea of informa-
tion. We now have access to massive datasets, yet we do
not have standard methods to efficiently store, handle, and
analyze such data. Different research groups, often facing
common data analysis and management challenges, end up
developing custom data pipelines, resulting in replication
of efforts, wasted resources, and incompatibility among
projects that might otherwise complement one another.

In industry, the need to perform large-scale data analysis
has resulted in the development and adoption of Big Data
frameworks, such as Apache Hadoop and Apache Spark.
Largely driven by Internet and finance companies, these
tools are most easily applied to Web and business data.
While industry has greatly benefited from standardized
Big Data technologies, we have not seen the same level
of adoption in the astronomical community, partially be-
cause adapting existing Big Data tools for scientific data
analysis is oftentimes not straightforward. Analogous so-
lutions, designed specifically for large-scale scientific data
analysis, management, and storage have not yet emerged,
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despite the increasing need. Projects such as the Sloan
Digital Sky Survey (York et al., 2000) and the Bolshoi
simulation (Klypin et al., 2011) have generated tens of
terabytes of data, most of which remain largely inacces-
sible for full-scale analysis due to data throughput and
storage limitations. Ongoing and future projects like the
National Virtual Observatory and the Large Synoptic Sur-
vey Telescope (Ivezic et al., 2008) will produce petabytes
of data. We need to develop efficient and scalable data
analysis and management pipelines in order to face the
coming challenges in the era of data-driven science.

1.1. I/O bottlenecks in conventional supercomputers

Most large-scale scientific data analysis is currently per-
formed on conventional supercomputer architectures in
which computing nodes are physically decoupled from data
storage. Such architectures are well-suited for compute-
intensive applications where CPU, memory, and inter-node
communication speed are the limiting factors. However,
they perform poorly when applied to data-intensive prob-
lems that require high data throughput, such as large-scale
signal processing, or analyzing large ensembles of data. As
the size of datasets approaches the petabyte scale, tradi-
tional supercomputing architectures quickly become I/O-
bound, which limits their usefulness for data analysis.

1.2. The Big Data approach

A distributed computing architecture, known as the dat-
acenter (Hoelzle and Barroso, 2009), has emerged as the
natural architecture for analyzing the enormous quantities
of data that have recently become available. Like most su-
percomputers, datacenters consist of many machines con-
nected via a network. Unlike supercomputers, however,
the data in datacenters is stored locally on the comput-
ing nodes, rather than in external storage servers. Each
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node in a datacenter primarily analyzes data stored locally,
rather than needing to first transfer data over a network
before beginning the analysis.

Software frameworks designed for efficiently performing
data analysis using the datacenter architecture are com-
monly referred to as “Big Data” frameworks. Such frame-
works share three key features:

• Data placement awareness. Data analysis is per-
formed preferentially on locally stored data, greatly
reducing network traffic, increasing I/O throughput.

• Fault tolerance. By enforcing data replication over
the datacenter, Big Data frameworks increase resis-
tance to failure. Hardware malfunctions do not result
in data and tasks loss. If a node fails its data is recov-
ered from other nodes and tasks are rescheduled and
performed on healthy nodes.

• Datacenter abstraction. Most Big Data frameworks
provide some degree of abstraction over the datacen-
ter, so typical users need not be aware of the details
of the underlying architecture.

Big Data frameworks are designed to make use of par-
allel programming models that exploit the datacenter ar-
chitecture. The prime example of this is the MapReduce
model (Dean and Ghemawat, 2008), which allows the anal-
ysis of massive distributed datasets by automatically di-
viding the analysis into many independent tasks that run
in parallel on the nodes of the datacenter (the map step).
The results of the map step are then aggregated into a final
result (the reduce step). For a more detailed discussion of
popular Big Data tools, refer to Appendix B.

Most existing Big Data frameworks are primarily in-
tended for text-based data. Analysis software is written
in (or ported to) Java, the de facto standard language for
enterprise and Big Data applications, or adapted to work
with solutions such as Hadoop Streaming. In addition to
this, reading and writing custom binary file formats, com-
mon in scientific research, is not straightforward; custom
code must be written to handle each file format. The com-
plexity involved in using Hadoop to analyze and manip-
ulate binary files is illustrated in the astronomical image
processing work of Wiley et al. (2011) and Chang et al.
(2011).

2. Simplified datacenter computing: StratOS

In the remainder of the paper, we describe StratOS1,
a Big Data platform designed to abstract a datacenter
as a regular desktop computer, as illustrated in Figure 1.
StratOS allows users to launch any pre-existing command-
line driven program or script on a datacenter; programs do
not need to be made aware of StratOS in order to work. A

1http://bitbucket.org/stratos-project/

Figure 1: The StratOS platform treats datacenter hardware the same
way a desktop operating system treats local CPUs, disks, and RAM.
The user is presented with an interface that hides the details of the
hardware.

Python module is provided for scripting and interactively
launching distributed data analysis tasks, and a C++ li-
brary is available for more advanced applications. Static
data analysis pipelines can be built with just a few lines
of code and the process of building more flexible analy-
sis systems, similar to Astro-WISE (Valentijn et al., 2007;
Vriend et al., 2012), is greatly simplified due to the level
of abstraction that StratOS provides.

StratOS is built using industry-standard open source
tools, which allows it to benefit from the efforts of a large
community of developers. This also means that system
builders and administrators who are already familiar with
existing Big Data tools do not need to learn anything new
in order to install and maintain StratOS.

The StratOS platform consists of three main compo-
nents: (i) a distributed operating system kernel, (ii) a
locality-aware distributed file system, and (iii) the StratOS
application framework. The kernel and file system cur-
rently used by StratOS are open source projects, managed
by the Apache Software Foundation: Apache Mesos (Hind-
man et al., 2011) and the Hadoop Distributed File System
(HDFS) (Shvachko et al., 2010). The HDFS is mounted on
each node of the system, using FUSE-DFS, so that appli-
cations can access the HDFS as though it is a local file sys-
tem. The application framework, which is the platform’s
defining component, provides a simple, intuitive interface
for launching and managing programs on the distributed
system. A schematic overview of the platform architecture
is shown in Figure 2.

StratOS users only need to be familiar with the basic
usage of a Python interpreter. No experience with dis-
tributed computing or multithreading is necessary. The
framework automatically schedules tasks so that, when-
ever possible, execution occurs on CPUs that have local
access to the data being used. This minimizes network
traffic and maximizes the rate at which data can be read.
Tasks that are lost due to hardware failures are automat-
ically rescheduled on other machines. The StratOS appli-
cation framework also provides a means of automatically
monitoring each task that runs on the distributed system;

2
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Figure 2: An overview of the StratOS architecture. Each worker
node runs a Mesos Slave daemon, an HDFS DataNode daemon, and
a StratOS executor, which is part of the StratOS application frame-
work. The Mesos master daemon and the HDFS NameNode daemon
each run on a dedicated node. The scheduler of the StratOS appli-
cation framework runs on a login node.

a user-defined task monitoring script can be executed at
regular intervals to examine the detailed behavior of each
task.

3. Base technologies

3.1. Distributed resource management with Apache Mesos

In the StratOS platform, the distributed resource man-
ager is crucial because it is responsible for efficiently allo-
cating computational resources. Among the available op-
tions, Mesos provided the best match to our requirements
because of its scalability and granularity.

Mesos is a distributed operating system kernel that
manages resources on a cluster of networked comput-
ing/storage nodes (e.g., a datacenter). Applications de-
veloped to run on top of Mesos, called frameworks, are
offered available resources by Mesos in order to perform
data analysis tasks. The framework is then responsible for
selecting tasks to run on the resources offered by the ker-
nel. A framework may also decline resource offers that are
not desired, in which case, the resources may be offered to
another framework. Mesos scales to tens of thousands of
nodes and allocates resources to frameworks with a high
degree of granularity; the smallest allocatable resource
unit is a single CPU thread. This makes it possible for
tasks from multiple frameworks to share a single machine,
allowing the efficient use of the datacenter, since there is no
need to partition the datacenter into application-specific
sections.

3.1.1. Mesos architecture

Mesos consists of two components: a master daemon
and a slave daemon. The master runs on the head node

Figure 3: Mesos architecture overview. The Mesos slave daemon
runs on each worker node and communicates directly with framework
executors. Note that multiple framework executors can share a single
slave node. Each slave daemon communicates with the Mesos master
node via a network. Framework schedulers communicate with the
Mesos master. Optionally, the system can be configured so that
backup master nodes can take over for the active master node, in
the case of hardware failure.

of the system and an instance of the slave runs on each
worker node. The master is responsible for global resource
management and system monitoring, while the slaves are
responsible for managing resources on individual nodes.

Each Mesos framework consists of two components, cor-
responding to the master-slave pair: a scheduler and an
executor. The scheduler handles resource offers and other
information provided by the master, such as task status
update messages. The executors are responsible for per-
forming the tasks assigned to them by the scheduler and
providing their local slave daemon with task status up-
dates. Refer to Figure 3 for a schematic overview of the
Mesos architecture. For a discussion of Mesos’ fault toler-
ance features, refer to Appendix A.

3.2. Data locality awareness with HDFS

StratOS stores data across the datacenter using the
HDFS, which is a robust, distributed file system, inspired
by the Google File System architecture (Ghemawat et al.,
2003). Files stored in HDFS are broken into blocks, which
are then replicated on multiple machines, so that the fail-
ure of any individual hard drive or host machine does not
result in data loss.

Suppose a user specifies that the block size for a partic-
ular file is 128 MB and that the block replication factor
for the file is three. If the file contains 500 MB of data,
it would be broken into four blocks and the HDFS would
contain three copies of each block. The file could be dis-
tributed across as many as 12 separate machines. When
the file is later accessed, as many as 12 machines could
potentially send data to the machine that is accessing the
file. If StratOS is used to launch a program that reads
this particular file, the program would automatically be
launched on the machine that contains the largest fraction
of the file’s data.

3



Figure 4: HDFS architecture overview. Dashed lines indicate the
transfer of metadata and instructions, while solid lines indicate block
data transfer. Client software sends instructions to, and obtains
metadata from, the NameNode. Each DataNode receives instruc-
tions and metadata from the NameNode. File block data is trans-
ferred among DataNodes and between client software and DataN-
odes. Optionally, a backup NameNode can be configured so that the
system can survive a NameNode failure.

3.2.1. HDFS architecture

HDFS consists of two components: a NameNode dae-
mon and a DataNode daemon. These are, in many ways,
analogous to Mesos’ master and slave daemons. The Na-
meNode stores the directory tree of the file system, tracks
the physical location of each block, and maps filenames to
file blocks. It also ensures that each block is replicated as
many times as specified by the user. Each DataNode dae-
mon manages blocks of data, which are stored on the local
file system of the host machine. DataNodes are respon-
sible for performing actions requested by the NameNode.
Data can be transferred between DataNodes (in order to
create copies) and directly between a DataNode and client
software, as shown in Figure 4.

To read data from the HDFS, client software first com-
municates with the NameNode, which provides the iden-
tities of the DataNodes containing the blocks of interest.
The client can then retrieve the blocks of data directly
from the relevant DataNodes. Transferring data to the
HDFS proceeds similarly; the client communicates with
the NameNode to determine which DataNodes will con-
tain blocks of the file. The data is then transferred directly
to the selected DataNode that is nearest to the client, in
terms of network distance. The nearest DataNode for-
wards packets of data to the second-closest DataNode that
was selected to contain a replica of the current block. This
process continues until the packet has been sent to all of
the selected DataNodes.

When data is added to the HDFS from an external
source (i.e., from a computer that is not running the
DataNode daemon), the new blocks of data are distributed
across the nodes of the system uniformly. Reading files

that are larger than the HDFS block size usually requires
a portion of the file to be transferred over the network. On
the other hand, when data is added by a program running
on an HDFS node, one copy of each data block is stored
locally on that node. This data can subsequently be read
entirely from the local disk.

We note that the HDFS is not a fully POSIX-compliant
file system. For instance, once data has been written to
a file, it cannot be modified. Files can, however, be ap-
pended with new data and they can be deleted and re-
placed with a new files with the same names as the old
files.

3.2.2. Standard file access with FUSE-DFS

The HDFS must be accessed using a program that is
aware of the HDFS interface. In order to allow pre-existing
software to access the HDFS without being modified, we
use the FUSE-DFS utility, which is part of the Hadoop
software project. FUSE-DFS is used to mount HDFS as a
local file system on each node of the cluster. Any software
can then access the HDFS as though it were an ordinary
directory on the local file system. Thus, the user does not
need to modify their software in order to take advantage
of the features offered by StratOS. However, FUSE-DFS
imposes constraints on the usage patterns. Most impor-
tantly, there is no support for appending data to a file. The
user is not presented with an error message when trying
to append data to a file. Thus, the user must be careful to
not confuse the mounted HDFS with a regular file system.

4. The StratOS application framework

The StratOS application framework is a custom Mesos
framework that allows users to launch arbitrary software
on a cluster. The user simply specifies the commands that
they wish to execute on the cluster and the framework
takes care of the details. A Python module and C++
library are available so that the framework can be used
interactively, via a script, or via a C++ application. The
framework inherits the fault tolerance offered by Mesos
and HDFS and adds an extra layer of fault tolerance, in
the form of task monitoring scripts.

4.1. The StratOS scheduler

The primary responsibility of the scheduler is to assign
commands to appropriate host machines, based on HDFS
data placement. Each command assigned to the StratOS
scheduler is first inspected for the presence of HDFS file-
names. The scheduler then identifies which host machines
contain data used by each command. When the Mesos
master offers resources to the scheduler, the scheduler
checks to see which not-yet-launched tasks involve data
on each host listed in the offer. Tasks are then assigned to
the appropriate hosts. If the scheduler is offered resources
on a host that does not contain any blocks of relevant data,
the offer is declined. Resource offers involving non-optimal
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hosts are only accepted if the scheduler has requested re-
sources on a more suitable host unsuccessfully. This can
happen if the appropriate hosts are being used by another
framework.

Whenever the status of a task changes, the Mesos mas-
ter informs the scheduler of the change by sending a task
status update message. The scheduler then makes a note
of the change and takes appropriate actions. For instance,
if a task status message indicates that a task has been lost,
the scheduler assigns the task to a new host. If the status
message indicates that a task has completed, the content
of the message is parsed for extra details. For instance, the
message may contain results of a computation performed
by the task. The task status message may also indicate
that a particular task was killed by the executor. In this
case, the message may contain a list of new commands
that should be launched on the cluster to replace the task
that was killed. Refer to Figure 5 for a graphical summary
of the communication within the framework.

4.2. The StratOS executor

The executor is responsible for launching individual
tasks on its host machine. It also sends status update
messages to the Mesos slave daemon, which then forwards
the messages to the master. Like a Unix shell, the execu-
tor allows the standard output and error streams of each
child task to be redirected. For instance, the standard
output can be saved to a file or stored in a status update
message. Note that the latter option is only practical for
tasks that send a small amount of output to the standard
output stream. This is because status update messages are
transferred to the master; sending large amounts of data
to the master would result in a communication bottleneck.

4.3. Task monitoring

The executor can also execute a user-defined task-
monitoring script at regular intervals. The monitoring
script is provided with the content of the standard out-
put and error streams and the process identification num-
ber of the task that it is monitoring. If the script de-
tects that the task is behaving in an undesirable way, it
can instruct the executor to terminate the task. Instruc-
tions for re-starting terminated tasks can also be provided
by defining a re-launch script. For example, if the user
knows that the phrase “using defaults instead” in a par-
ticular application’s standard error stream indicates that a
non-fatal error has occurred, the user could write a script
which searches the standard error stream for that partic-
ular phrase. When this phrase is encountered, the script
can instruct the framework to terminate the task. If the
user has defined a re-launch script, the executor then runs
this script immediately after terminating the task. The
re-launch script can be used to construct one or more new
commands, which are then sent to the scheduler. For in-
stance, if the “using defaults” message depends on the in-
put parameters of the code of interest, the re-launch script

Figure 5: An overview of the StratOS application framework archi-
tecture. The Mesos Master communicates with the Mesos Slave dae-
mon, running on each worker node. The StratOS scheduler interacts
with the Mesos Master daemon, using the Mesos scheduler driver.
Similarly, each StratOS executor interacts with its local Mesos Slave,
using the Mesos executor driver. The executors run tasks assigned
by the scheduler and send status updates to the scheduler by way of
the Mesos Slave and Master daemons. Optionally, the executor can
attach a task monitor to each task.

could be designed to slightly alter the input parameters of
the task that was terminated.

5. StratOS use cases

In this section, we present three illustrative cases of the
ability of StratOS to run massive analysis on distributed
data using a few commands. All examples make use of the
StratOS Python interface.

Example I: Batch processing of images

The most basic way to use StratOS is as a distributed
batch processor. Batch processing is ideal for any em-
barrassingly parallel pipeline step that involves analyzing
large datasets distributed on a datacenter. Examples of
such applications include large-scale image or video pro-
cessing, analysis of simulation data, and exploration of pa-
rameter space in an ensemble dataset.

Suppose a large number of images, stored in a datacen-
ter, need to be processed using a program called img_-

proc, which requires two arguments: an output directory
and an input filename. The img_proc program processes
its input image, saves the resulting image to the specified
output directory, and writes statistics about the operation
to the standard output stream. In order to use img_proc

with StratOS to process a directory full of images, the
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user places the img_proc program in the HDFS file sys-
tem, opens a Python interpreter, and types the following
commands:

from stratos import Processor

job = Processor()

job.glob_batch("/dfs/img_proc /dfs/out/ %f%",

"/dfs/images/*")

results = job.get_results()

1
The first statement loads the StratOS Processor class into
the current namespace. This class provides an interface to
the StratOS scheduler. Since the import statement is al-
ways present, it will be omitted from subsequent examples.

The second statement creates a Processor object,
named job, using default parameters to set up a batch job.
On the third line, the Processor’s glob_batch() method
is used to construct a list of commands, which are then
submitted to the StratOS scheduler. The second argument
of glob_batch() is a filename pattern, containing one
or more wildcard characters (asterisks). All files within
the /dfs/images/ directory will be matched. The first
argument, which specifies the command to be launched,
contains a filename placeholder, %f%. Suppose the di-
rectory, /dfs/images/ contains files named img_00000,
img_00001, img_00002, . . . , img_50000. The glob_-

batch() method would submit the following commands
to the scheduler:

/dfs/img_proc /dfs/out/ img_00000

/dfs/img_proc /dfs/out/ img_00001

/dfs/img_proc /dfs/out/ img_00002

.

.

.

/dfs/img_proc /dfs/out/ img_50000

By default, the standard output of each task is sent to the
scheduler and is made accessible using get_results().
In this example, results is a Python list containing the
standard output of each task.

Example II: Interactive data analysis

The glob_batch() method, used in Example I, causes
the current thread to be blocked; the user cannot work
interactively with the batch job until all tasks have com-
pleted. In order to enable interactive data analysis and
task management, a streaming mode of operation is avail-
able. In this mode, the user can inspect the status of each
task, retrieve the output of completed tasks, add new tasks
to the scheduler, and cancel specific tasks before the entire
job has finished. This type of interactive usage is demon-
strated in Example II (Figure 6).

Example II begins by providing the Processor’s con-
structor with a non-default parameter, specifying that
each task will be allocated four CPU threads. The glob_-

stream() method on the second line works the same way

job = Processor(threads_per_task=4)

# add some tasks:

job.glob_stream("/dfs/img_proc2 /dfs/out/ %f%",

"/dfs/images/*")

# how many tasks have not completed?:

job.count_unfinished_tasks()

# get results from completed tasks:

results = job.get_results()

# add more tasks:

job.glob_stream("/dfs/img_proc2 %f%",

"/dfs/more_images/*")

# block the thread until all tasks have completed:

job.wait()

# append remaining results to the list:

results += job.get_results()

1
Figure 6: Example II

as the glob_batch() method, discussed previously, ex-
cept that glob_stream() does not block the thread. This
makes it possible to retrieve a partial list of results, add
more tasks to the job, and perform various other oper-
ations while tasks are still running on the cluster. The
third command requests the number of tasks that have
not yet finished executing—a useful indicator of the job’s
progress. With the fourth command, the standard output
of each completed task is stored in a Python list, called
results; the standard output of the tasks can be exam-
ined at this point. The fifth command assigns more tasks
to the job. Calling job.wait() causes the thread to be
blocked until all tasks have completed. Finally, we ob-
tain the remaining results by calling get_results() once
more. Note that individual results are only returned once
by get_results(). Thus, the second invocation of get_-
results() only returns the output from tasks that com-
pleted after the the first invocation of get_results().

Example III: Custom MapReduce implementation

In streaming mode, multiple StratOS schedulers can op-
erate simultaneously and it is possible for the schedulers
to interact. In this example, a version of MapReduce is
implemented using two interacting schedulers.

Suppose a program called map analyzes a single input
file and saves the results of its analysis in a new file whose
filename is written to the standard output stream. An-
other program, called reduce, reads two files containing
the output of the map program. It then summarizes the
contents of the input files and saves the summary to a file
whose name is written to the standard output. These map

and reduce programs are used together in Example III
(Figure 7) to obtain a single file which summarizes the
contents of a directory full of input files.

The example begins with the creation of two Processor

objects, named mapper and reducer, which will be used
to run the map and reduce programs, respectively. The
mapper tasks are allocated twice as many threads as the
reducer tasks because the map program requires more
computational power than the reduce program. We have
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mapper = Processor(threads_per_task=4, name="mapper")

reducer = Processor(threads_per_task=2, name="reducer")

mapper.glob_stream("/dfs/map %f%", "/dfs/input_data/*")

mapped_files = []

while (mapper.count_unfinished_tasks() or

reducer.count_unfinished_tasks() or

len(mapped_files) > 1):

mapped_files += mapper.get_results()

if len(mapped_files) >= 2:

reduction_inputs = [[mapped_files.pop(0)

for i in [0,1]]]

reducer.template_stream("/dfs/reduce %f% %f%",

reduction_inputs)

mapped_files += reducer.get_results()

1
Figure 7: Example III

introduced the name parameter in the Processor construc-
tor, which allows us to easily distinguish tasks belonging
to different jobs. This allows us to easily distinguish be-
tween the mapper and reducer if we need to inspect the
Mesos logs.

The glob_stream() method is then used to assign tasks
to the mapper. As tasks from the mapper are completed,
the results are used to assign new tasks to the reducer.
Results from the reducer are recursively combined until
only one output filename remains in the mapped_files

list.

The template_stream() method, used by the reducer,
constructs commands by substituting instances of the pa-
rameter placeholders in its first argument with entries of
the Python list in its second argument. Multiple param-
eters can be specified by using a nested list as the second
parameter. Suppose the second argument is the following
nested list:

[["/dfs/temp/file_1", "/dfs/temp/file_2"],

["/dfs/temp/file_3", "/dfs/temp/file_4"],

["/dfs/temp/file_5", "/dfs/temp/file_6"]]

The template_stream() method would submit the fol-
lowing commands to the scheduler:

/dfs/reduce /dfs/temp/file_1 /dfs/temp/file_2

/dfs/reduce /dfs/temp/file_3 /dfs/temp/file_4

/dfs/reduce /dfs/temp/file_5 /dfs/temp/file_6

Although it is not the most efficient implementation, this
example hints at the ease with which MapReduce can be
implemented using StratOS. Note that the mapper and
reducer streams are executed simultaneously and, be-
cause of the granularity offered by Mesos, tasks belonging
to the mapper stream can be executed on the same host
as tasks from the reducer stream.

6. Discussion

StratOS makes it possible to treat a cluster of ma-
chines as single machine. In achieving this, it combines the
strengths of Big Data tools and classic batch processors.
Like a classic batch processor, StratOS can launch arbi-
trary software a cluster. In contrast, most software used by
popular Big Data frameworks must be made aware of the
framework in some way. The tasks launched by StratOS
can operate on arbitrary data formats with no extra ef-
fort from the user, whereas most Big Data tools require
extra effort for each specific data format that is used. Un-
like classic batch schedulers, StratOS tasks are scheduled
in a data locality-aware manner in order to improve data
throughput. New tasks can be incrementally added to a
batch job, results can be accessed programmatically while
the job is running, and multiple batch jobs can be used in
a single analysis routine—either in parallel or sequentially.
Additionally, StratOS provides an automated way to mon-
itor the behavior of each task and take actions, based upon
the observed behavior. This is a feature that no other tool
offers.

The StratOS application framework can be used via a
Python module or a C++ library, whereas most Big Data
frameworks are heavily dependent upon Java. This makes
it more accessible to scientists, since scientists are more
likely to be familiar with Python or C++, than Java. The
Python module also allows the framework to be used in-
teractively.

Since StratOS is based upon industry-standard tools, it
benefits from the efforts of a large community of engineers.
This also means that the platform is compatible with many
existing tools. For instance, Apache Hadoop Mapreduce,
Apache Spark, Apache Hama, Apache Storm, TORQUE,
and MPICH can all run on the StratOS platform alongside
the StratOS application framework because all of these
tools are compatible with the Apache Mesos kernel. It is
even possible to use the StratOS application framework
and Apache Spark together in the same Python script.

StratOS as a cloud service

Cloud computing services allow users to pay for com-
puting resources as needed, rather than building their own
cluster. Since the core components of StratOS are already
available on several cloud computing services, such as the
Amazon Elastic Compute Cloud (EC2), installing StratOS
on these services is straightforward.

Future work

Although it is useful to treat HDFS as a local filesys-
tem, as is done in StratOS, the user must be aware of
certain complications that can arise. In particular, since
FUSE-DFS does not support appending data to files, pro-
grams that depend upon the ability to append will not
work properly. This can cause errors that are difficult to
diagnose. Also, storing a large number of small files (much
smaller than the HDFS block size) unnecessarily burdens

7



the HDFS NameNode. This problem can be alleviated by
combining small files into larger files, but this requires ex-
tra effort. Dealing with very large files (requiring tens of
blocks) is also inefficient because the entire file must be
read by each task that uses it. When possible, splitting
large files into smaller, independent pieces, can help to re-
solve this problem. However, this also requires extra effort
by the user. For maximal throughput, programs some-
times need to directly access the HDFS using the HDFS
library.

When implementing an algorithm that requires the same
data to be accessed repeatedly by subsequent tasks, it is
beneficial to cache the repeatedly-used data by saving it
on a local hard drive or in a RAM disk. This improves per-
formance because there is no need to repeatedly read the
same files from the HDFS. In its current form, StratOS
does not provide an automatic method of caching data.
The user can launch tasks which store data in a spe-
cific location on the local machine, however the user is
also responsible for deleting such files when they are no
longer needed. Furthermore, there is no easy way to en-
sure that subsequent tasks are launched on machines con-
taining cached data.

StratOS offers no automatic way to facilitate inter-task
communication. In order for tasks to communicate, the
user must either save files to the HDFS or include network
communication capabilities in the task software. This re-
quires extra thought and effort on the part of the user.

We plan to make the StratOS application framework
even easier to use by providing automated methods for
handling additional usage scenarios. We will also work to
address the weaknesses of the StratOS application frame-
work, discussed above. In particular, we plan to add an
easy, automated method for persistently storing certain
data on local disks (including RAM disks) for use by subse-
quent tasks. Cached data will automatically be cleaned up
so that manual intervention is unnecessary. The StratOS
application framework will rely less heavily upon FUSE-
DFS and there will be facilities for automatically improv-
ing the performance of tasks that use large numbers of
small files as well as some tasks that make use of very large
files. We will also eventually provide an automated means
of enabling inter-task communication so that a broader
variety of algorithms can be implemented easily.
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Appendix A. Fault tolerance

In this appendix, we describe the fault tolerance features
of Mesos and HDFS in greater detail.

Mesos

If the Mesos master daemon detects that a slave has be-
come unreachable (for instance, due to hardware failure),
it notifies the relevant framework schedulers that the tasks
running on the unreachable machine have been lost. The
schedulers can then assign the lost tasks to other hosts.
Thus, the system seamlessly handles node failures. Addi-
tionally, it is possible to configure redundant Mesos mas-
ters, so that the system is resilient to master node failure.

HDFS

The HDFS DataNode daemon sends status messages,
called “heartbeats,” to the NameNode at regular inter-
vals to inform the NameNode that it is still alive and
reachable. If the NameNode stops receiving heartbeats
from a particular DataNode, that DataNode is assumed
to be dead. The NameNode then instructs the remain-
ing DataNodes to make additional copies of the data that
was stored on the dead node so that the required repli-
cation factor of each block is maintained. Additionally,
each time a DataNode reads a block of data, it computes
a checksum. If the checksum does not match the original
checksum, stored in the block’s associated metadata file,
the NameNode is informed that the block has been cor-
rupted. A new copy is then created from the uncorrupted
copies on other machines. As in the case of the Mesos mas-
ter daemon, it is possible to configure redundant, backup
NameNodes so that the file system remains intact when
the machine hosting the primary NameNode experiences
a failure.

Appendix B. Summary of existing tools

In this appendix, we briefly summarize the features
of several popular tools: Apache Hadoop MapReduce,
Apache Hama, Apache Spark, MapR, and TORQUE. We
also comment on aspects of these tools that limit their
usefulness for large-scale scientific data analysis.

Hadoop MapReduce

The Hadoop MapReduce framework is an implementa-
tion of the MapReduce programming model. The user
provides a mapper function and a reducer function, typ-
ically in the form of Java class methods. The user then
provides a set of key-value pairs (for instance, filenames
and file contents) for the framework to operate upon. The
mapper transforms the initial set of key-value pairs into a
second set of key-value pairs. The intermediate key-value
pairs are then globally sorted by key and transformed into
a third set of key-value pairs by the reducer.

General computing applicability

The mapper and reducer almost always need to be de-
signed with Hadoop in mind. A feature called Hadoop
Streaming makes it possible to use pre-existing executable
files as the mapper and reducer. However, the executa-
bles need to be able to read and write key-value pairs via
the standard input and output streams. In many situa-
tions, using pre-existing software with Streaming requires
the software to be invoked from a script which formats the
input and output streams appropriately. In other situa-
tions, the mapper and reducer programs have to be mod-
ified in order to to work properly.

Handling non-trivial data formats efficiently requires
special care. If the data format being used with MapRe-
duce is more complicated than a text file that can be split
into single-line records, then a custom file reader must be
defined in order for the MapReduce framework to properly
read the data. Reading binary files produced by scientific
instruments or simulations is even more cumbersome than
reading formatted text.

Using Hadoop MapReduce with languages other than
Java requires a bit more work, since the framework is pri-
marily intended to be used by Java programmers. In or-
der to use Hadoop MapReduce with languages other than
Java, one can use Hadoop Pipes, which makes it possible
to write mappers and reducers in C++. The C++ code
can be extended to make use of other languages, such as
Python.

Hama

Apache Hama is a framework for Big Data analytics
which uses the Bulk Synchronous Parallel (BSP) com-
puting model (Valiant, 1990) in which a distributed com-
putation proceeds in a series of super-steps consisting of
three stages: (1) concurrent, independent computation on
worker nodes, (2) communication among processes run-
ning on worker nodes, and finally (3) barrier synchroniza-
tion.

Individual processes stay alive for multiple super-steps.
Thus, data can easily be stored in RAM between steps.
This allows Hama to perform very well on iterative com-
putations that repeatedly access the same data. Hama can
outperform Hadoop MapReduce by two orders of magni-
tude on such tasks.

General computing applicability

Like Apache MapReduce, Hama is primarily intended
to be used with Java, but it is possible to write programs
in C++, using Hapa Pipes. Hama handles data formats
in exactly the same way as Hadoop MapReduce. Thus,
working with raw scientific data is not straightforward in
most cases.

Spark

Apache Spark is framework based upon the concept
of Resilient Distributed Datasets (RDDs) (Zaharia et al.,
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2012). As the name suggests, RDDs are distributed across
a cluster of machines. For added performance, the contents
of an RDD can be stored in memory. Their resiliency lies
to the fact that only the initial content of the RDDs and
transformations performed on them need to be stored in a
distributed file system; the memory-resident version of an
RDD can be automatically recreated upon node failure by
repeating transformations on the initial data.

Compared with Hadoop MapReduce, Spark offers more
flexibility. There is no need to use a particular program-
ming model; it is possible to implement MapReduce, BSP,
and other models with Spark. Spark is also more inter-
active. Once an RDD is created, operations can easily be
performed on the data by issuing commands from an in-
terpreter. Spark works natively with three programming
languages: Scala, Java, and Python.

General computing applicability

Any executable file can be invoked with the RDD
pipe() transformation, which sends data to the executable
via a Unix pipe and then stores the standard output of the
executable in an RDD. However, in order to be useful, the
program must be able to read data from its input stream
and send output data to the standard output stream. Pro-
grams that do not behave in this way need to first be mod-
ified in order to be compatible with Spark.

Using data that is more complicated than plain text
requires the user to define a file format reader. Thus,
working directly with raw scientific data formats is not
straightforward.

MapR

MapR is a proprietary Big Data platform, based on a
distributed file system, called MapR-FS, which is more
flexible than HDFS. It can also achieve higher performance
than HDFS, in some cases. Unlike HDFS, MapR-FS is
POSIX compliant. Notably, file editing is not limited to
merely appending data to the end of a file. Many exist-
ing frameworks that use HDFS and Hadoop’s Yarn cluster
manager run on the MapR platform.

General computing applicability

Whereas most other tools and platforms are free, MapR
is not. Although there are several price tiers, the full ben-
efits of the MapR-FS are only realized with the most ex-
pensive option. Due to licensing, a MapR cluster must
contact a licence server in order to start running. Another
potential drawback is that disks must be formatted at a
low level in order to use MapR-FS. Once a disk is format-
ted with MapR-FS, it can only be accessed by MapR. Most
of the complications inherent in using Hadoop MapReduce
and Spark remain problematic with MapR.

TORQUE

TORQUE is a distributed resource manager, designed
for submitting and managing batch jobs on a cluster. With

TORQUE, it is possible to launch arbitrary programs and
operate on arbitrary data. Batch jobs are launched by first
writing a batch submission script and then submitting the
script to the scheduler. It is possible to monitor the status
of a batch job and individual tasks while the job is running.

General computing applicability

Unlike the Big Data tools, discussed above, TORQUE is
not aware of data placement. Thus, data throughput de-
pends heavily upon the speed of the network. It is also not
straightforward to create data analysis routines consisting
of multiple batch jobs. TORQUE is primarily intended for
manually launching batch jobs, rather than creating jobs
programmatically.
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